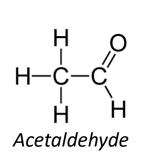


Centre universitaire de médecine générale et santé publique · Lausanne

Toxicology of ENDS

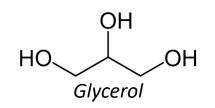
Aurélie Berthet, PhD.


aurelie.berthet@unisante.ch

ARUD Symposium on E-Cigarettes and Harm Reduction – February, 25th 2021

Outline

- Introduction
- ENDS characteristics and use
- The aerosol composition
- Nicotine absorption
- Conclusion



Η

Н

Formaldehyde

H O H C C H H H

Acrolein

Propylene glycol

Nicotine

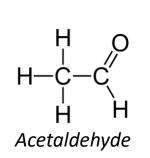
HO

OH

Introduction

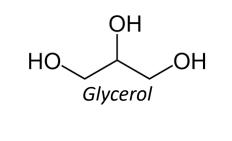
Unisanté Centre universitaire de médecine générale et santé publique · Lausanne

An overview on scientific information regarding ENDS toxicology

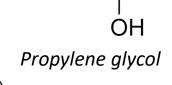

- ENDS were developed to deliver nicotine without other harmful constituents
- ENDS aerosol is far less toxic than tobacco cigarette smoke exposure (no combustion process)
- Evidence confirms that the heating of refill solutions may generate some new components with a certain level of toxicity such as carbonyls and metals
- Data on ENDS toxicity is very limited, with very few thorough risk assessment analyses

Inconsistency in results and lack of data

- Results are inconsistent on compounds released in aerosol due to differences in exposure methods and models among studies
- ENDS aerosol is water soluble: aerosol is likely be deposited in the conducting zone of the airways, and a small amount can reach the alveolar region
- Evidence of long-term effects is lacking


Unisanté Centre universitaire de médecine générale et santé publique · Lausanne

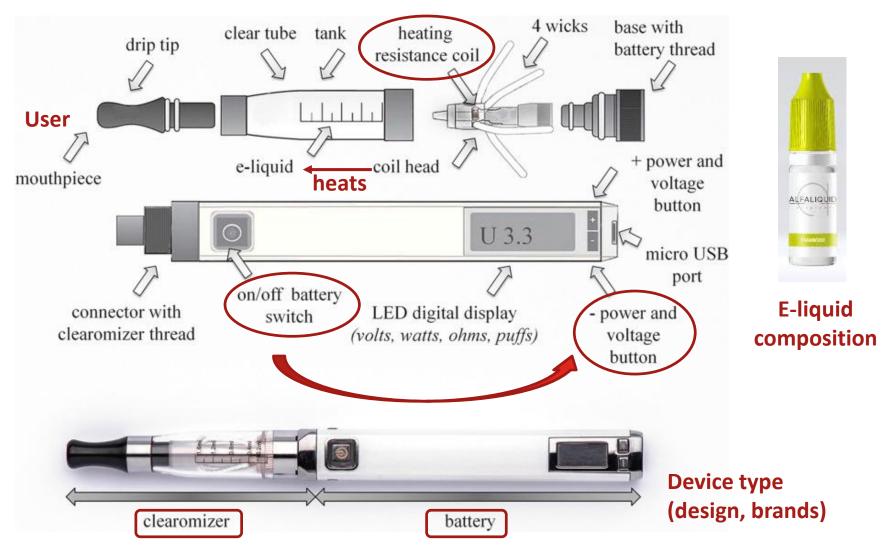
Н


Formaldehyde

,Ċ,Ċ,Ċ,H H Acrolein ⊢

Н

H


HO

ENDS: characteristics and use

Unisanté Centre universitaire de médecine générale et santé publique · Lausanne

ENDS characteristics and parameters influencing chemical composition in aerosol

Giroud et al. (2015) E-Cigarettes: A Review of New Trends in Cannabis Use

Main components of e-liquids

Humectants/solvents

Propylene glycol

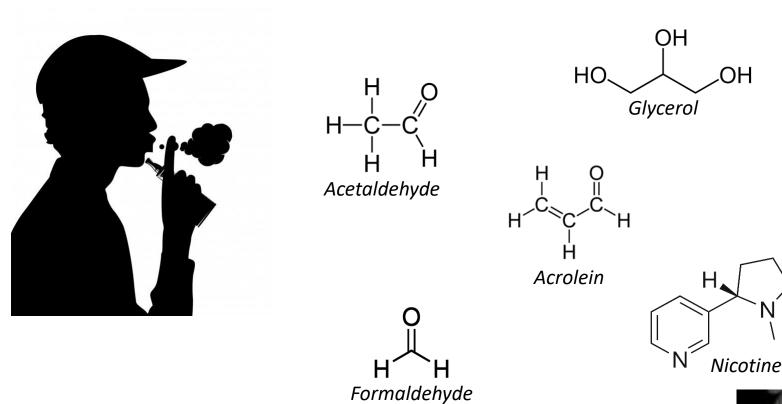
Glycerol

- (or vegetable glycerin)
- Main immersing solvents
- Form the base of e-liquid
- Prevent the e-liquid to dry out
- Dilute nicotine
- Allow the consistency to easily vaporized the e-liquid
- The ratio affects: nicotine delivery + the "cloud formation" from user (PG: carries flavours + better "throat hit" while VG: thickness of the cloud + much smoother)

Ethanol

Nicotine (≤ 20 mg/mL)

Flavoring agents


- > 7000 flavoring agents
- Consist of synthetic chemicals in the liquid form
- Emit aromas upon heating
- Approved for ingestion, not tested for inhalation

Water

ALFALIGUI

Puffing profile

- Style of puffing affects the concentration of toxicants released
- The parameters of puffing are diverse and include important variables to consider to measure the compounds released:
 - The number of puffs
 - Puffing duration (time interval at which e-liquid is heated up)
 - Puff intervals (break time between puffs)
 - Puffing intensity (combination of the puff volume, puff frequency, and heating voltage)
 - Total puff volume (combination of the puff velocity and puff number)
- Varies significantly with brands and users

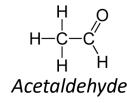
unisanté Centre universitaire de médecine générale et santé publique Lausanne

HO

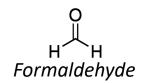
 OH

Propylene glycol

The potential toxicants in aerosols

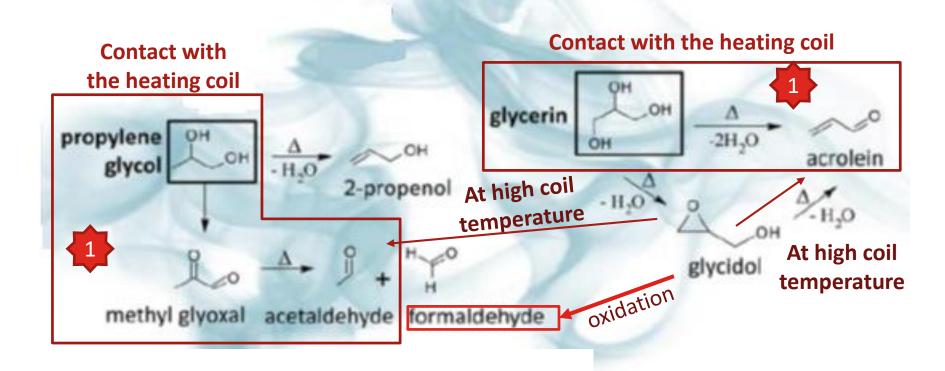

- Approximately 250 chemical substances may be detected in the aerosols including nicotine, flavorings, alkaloids, volatile organic compounds (VOCs), pyridine, and carbonyl compounds
- A high correlation with several compounds and the operating power of ENDS
- This implies that e-liquid ingredients might be chemically altered during the vaporization process

PG and VG: potential health effects


- The most common symptom reported is a dry mouth and throat, which is considered to originate from the water-absorbing property of PG and glycerol
- No study on long-term exposure to PG and glycerol

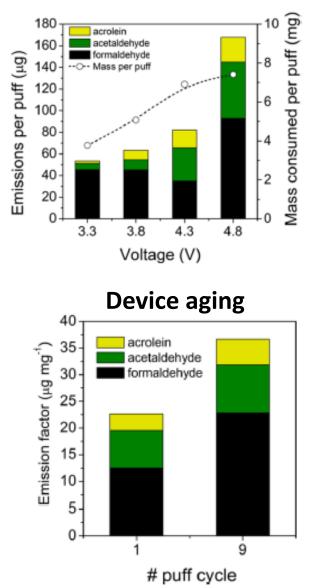
Primary concerns: carbonyls

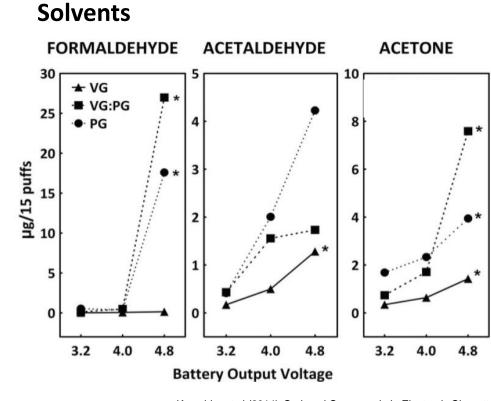
- Traces measured in e-liquids
- Dominant components in aerosols:
 - Acetaldehyde
 - Formaldehyde
 - Acrolein (not in e-liquid)
- Concentrations vary among brands and among samples of the same device
- May cause irritation to the respiratory tract and potential carcinogens



How do explain variations among carbonyl concentrations?

• Carbonyls generated when e-liquid is heated


Main sources: oxidation of PG and VG



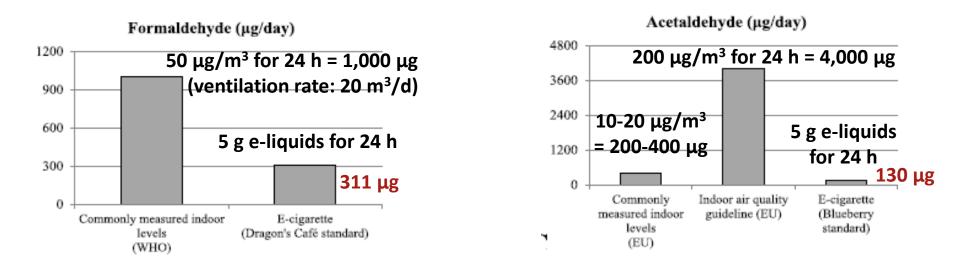
How do explain variations among carbonyl concentrations?

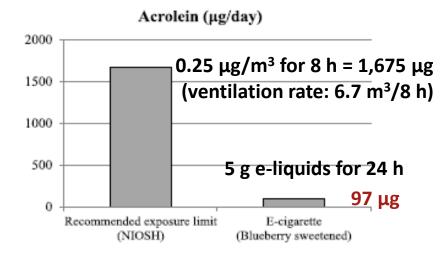
- Carbonyls generated when e-liquid is heated
- The battery output voltage significantly affects the concentration of carbonyl: High voltage = high concentrations
- Heating coil temperatures above 300°C (low concentrations below 300°C)
- Low e-liquid levels within tank due to airflow increase and overheating
- After several uses of ENDS: increase up to 60% of carbonyl emission due to degradation of polymerization by-products upon heating
- Flavoring compounds may also play a role

Effects of different parameters on carbonyl Voltage emission

Kosmider et al (2014) Carbonyl Compounds in Electronic Cigarette Vapors: Effects of Nicotine Solvent and Battery Output Voltage

* Indicates statistically significant increase from 3.2 Volts (p < 0.05)


Flavoring agents contribute to carbonyl emissions


	μg/g e-liquid		
Sample	Formaldehyde	Acetaldehyde	Acrolein
Unflavoured	16.1 (2.0)	5.6 (1.2)	2.4 (1.8)
Standard versions			
ECBlend blueberry	18.0 (3.7)	26.0 (6.2)	18.3 (5.8)
ECBlend Dragon's café	62.2 (2.6)	14.3 (3.6)	10.8 (4.2)
ECBlend watermelon	10.7 (6.9)	22.0 (19.4)	13.4 (10.4)
Sweetened versions			
ECBlend blueberry	19.0 (4.7)	25.0 (7.6)	19.4 (4.4)
ECBlend Dragon's café	56.8 (0.9)	12.1 (1.3)	5.4 (1.8)
ECBlend watermelon	8.3 (2.0)	17.7 (6.2)	9.3 (4.7)

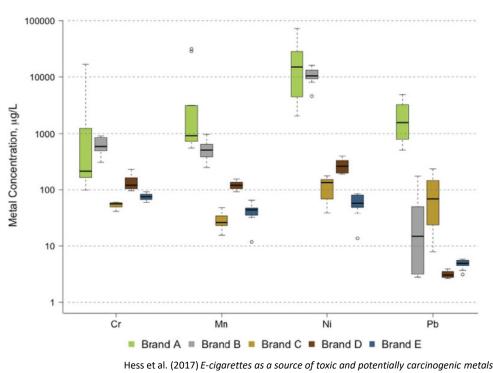
Farsalinos and Voudris (2018) Do flavouring compounds contribute to aldehyde emissions in e-cigarettes?

- No propionaldehyde or crotonaldehyde detected
- 60% PG and 40% VG; 1.2% nicotine
- Voltage: 4V; 1.5 Ohm; 10.7W

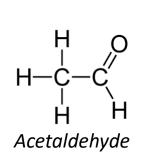
How to interpret these concentrations?

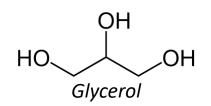
Second concerns: Flavoring agents

- Little information available on health effect during longterm exposures by inhalation
- Some are **sensitizing**, **irritating**, or **toxic**:
 - Diacetyl and acetylpropionyl: associated with adverse respiratory health outcomes
 - Cinnamaldehyde (cinnamon-flavored, caramel, fruity): cytotoxic and genotoxic at low concentrations (in vitro studies)
- Saccharides, used to make sweet e-liquid flavors, degrade and produce aldehydes and furans (irritation to the upper respiratory tract)
- Furan concentration are correlated with power of the device and sweetener concentration, but not puff duration

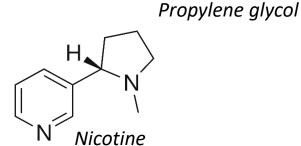

VOCs: very low concentrations

- Not present in e-liquid (unless impurities)
- Produced at much lower concentrations than carbonyls
- Main compounds, depending on flavors:
 - Ethanol
 - M,p-xylene
 - Styrene
 - Toluene
 - Benzene


Metals: in e-liquids and emissions


- The origin of the metals could be:
 - the metallic coil used to heat the e-liquid
 - other parts of the e-cigarette device
 - e-liquids
- Some of the key metals include chromium, nickel, lead, manganese, aluminum, tin, iron

Distribution of metal concentrations within and across brands of ENDS



H O I II H C C C H

Acrolein

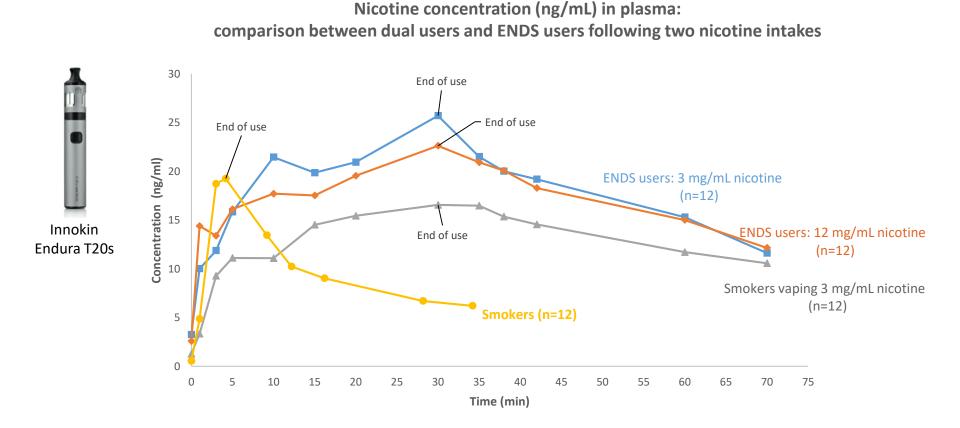
HO

OH

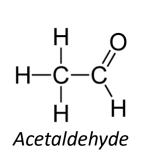
Nicotine intake using ENDS

Formaldehyde

Н

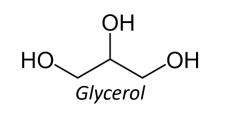

Unisanté Centre universitaire de médecine générale et santé publique Lausanne

Variability of nicotine content


- Nicotine content is highly variable and depends on product characteristics (including device and e-liquid characteristics) and how the device is operated
- Nicotine concentration in aerosols increases with:
 - ENDS power (coil temperature, voltage
 - E-liquid nicotine concentration
 - Puff duration
 - Alkaline pH in e-liquid improves its bioavailability

Pharmacokinetics of nicotine

 Nicotine intake from ENDS devices among experienced adult users can be comparable to that from combustible tobacco cigarettes



Н

Н

Formaldehyde

Н H

н

Acrolein

Propylene glycol Ν

Nicotine

HO

OH

Conclusion

unisantė Centre universitaire de médecine générale et santé publique Lausanne

Overall conclusions

- Nicotine intake is comparable to tobacco cigarettes
- ENDS aerosol is far less toxic than tobacco cigarette smoke exposure (no combustion process)
- Potential harmful toxicants are still present in ENDS emissions and aerosols
- To limit the exposure to toxicants, it is important to accurately set-up ENDS parameters and select appropriate devices and e-liquids

unisantė

Centre universitaire de médecine générale et santé publique Lausanne

Thank you for your attention

